A. Hình A.
B
Phương pháp giải: + Công thức tính động năng: \(K\, = \,\frac{1}{2}m{v^2}\)
+ Hệ thức độc lập theo thời gian: \({A^2}\, = \,{x^2}\, + \,\frac{{{v^2}}}{{{\omega ^2}}}\, \Rightarrow \,{v^2}\, = \,{\omega ^2}.\left( {{A^2}\, - \,{x^2}} \right)\)
+ Sử dụng lí thuyết về đồ thị hàm số.
Giải chi tiết:
Động năng của con lắc lò xo dao động điều hòa: \(K\, = \,\frac{1}{2}m{v^2}\)
Lại có: \({v^2}\, = \,{\omega ^2}.\left( {{A^2}\, - \,{x^2}} \right)\)
⇒\(K\, = \,\frac{1}{2}m{v^2}\, = \frac{1}{2}\,m{\omega ^2}.{\left( {{A^2}\, - \,{x^2}} \right)^2}\)
⇒\(K\, = \, - \frac{1}{2}m{\omega ^2}{x^2}\, + \,\frac{1}{2}m{\omega ^2}{A^2}\) (∗)
(∗) có dạng \(y\, = \,a{x^2}\, + \,b\)với a<0
⇒ Đồ thị biểu diễn sự biến thiên của động năng K của con lắc theo \(x\) có dạng hình B.
Đáp án B.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247