Thiết diện qua trục của một hình nón là một tam giác đều có diện tích bằng a^2 căn bậc hai 3. Diện tích xung quanh của hình nón bằng

Câu hỏi :

Thiết diện qua trục của một hình nón là một tam giác đều có diện tích bằng a23. Diện tích xung quanh của hình nón bằng

A. \(\frac{{3\pi {a^2}}}{4}\)

B. \(\pi {a^2}\)

C. \(2\pi {a^2}\)

D. \(\frac{{\pi {a^2}}}{2}\)

* Đáp án

C

* Hướng dẫn giải

Phương pháp giải:  Thiết diện qua trục của hình nón là một tam giác cân có cạnh đáy là đường kính đáy, hai cạnh bên là đường sinh của hình nón.

Diện tích xung quanh của hình nón bán kính đáy \[r\], đường sinh \[l\]được tính bởi công thức \[{S_{xq}} = \pi rl\]

Giải chi tiết:

Thiết diện qua trục của một hình nón là một tam giác đều có diện tích bằng (ảnh 1)

Gọi \[r\]là bán kính đáy và \[l\]là đường sinh của hình nón

Thiết diện qua trục của hình nón là một tam giác đều nên \[l = 2r\]

Do đó diện tích thiết diện là \[S = \frac{{{l^2}\sqrt 3 }}{4}\]

Theo bài ra ta có: \[\frac{{\sqrt 3 }}{4}.\,{l^2} = \,{a^3}\sqrt 3 \, \Rightarrow \,l\, = \,2a\, \Rightarrow \,r\, = \,a\]

Diện tích xung quanh của hình nón là: \[{S_{xq}} = \pi rl = \pi .a.2a = 2\pi {a^2}\]

Chọn C.

Copyright © 2021 HOCTAP247