Cho hàm số f( x ) có đạo hàm liên tục trên (- 1; + vô cùng). Biểu thức

Câu hỏi :

Cho hàm số \(f\left( x \right)\) có đạo hàm liên tục trên (-1;+). Biểu thức \(2f\left( x \right)\, + \,\left( {{x^2}\, - \,1} \right)f'\left( x \right)\, = \,\frac{{x{{\left( {x\, + \,1} \right)}^2}}}{{\sqrt {{x^2}\, + \,3} }}\) được thỏa mãn \(\forall x\, \in \,\left( { - 1\,;\, + \infty } \right)\). Tính giá trị \(f\left( 0 \right)\).

A. \(3\, - \,\sqrt 3 \)

B. \(2\, - \,\sqrt 3 \)

C. \( - \,\sqrt 3 \)

D. \(\sqrt 3 \)

* Đáp án

B

* Hướng dẫn giải

Phương pháp giải:  Chia cả 2 vế cho \({(x + 1)^2}\). Sử dụng phương pháp lấy nguyên hàm hai vế

Giải chi tiết: Ta có:

\(\begin{array}{l}2f(x) + ({x^2} - 1)f'(x) = \frac{{x{{(x + 1)}^2}}}{{\sqrt {{x^2} + 3} }}\\ \Leftrightarrow \frac{2}{{{{(x + 1)}^2}}}f(x) + \frac{{x - 1}}{{x + 1}}f'(x) = \frac{x}{{\sqrt {{x^2} + 3} }}\\ \Leftrightarrow {\left( {\frac{{x - 1}}{{x + 1}}} \right)^\prime }.f(x) + \frac{{x - 1}}{{x + 1}}.f'(x) = \frac{x}{{\sqrt {{x^2} + 3} }}\\ \Leftrightarrow {\left[ {\frac{{x - 1}}{{x + 1}}.f(x)} \right]^\prime } = \frac{x}{{\sqrt {{x^2} + 3} }}\end{array}\)

Lấy nguyên hàm hai vế ta được:

\(\int {{{\left[ {\frac{{x - 1}}{{x + 1}}.f(x)} \right]}^\prime }dx = \int {\frac{x}{{\sqrt {{x^2} + 3} }}dx} } \)

\( \Leftrightarrow \frac{{x - 1}}{{x + 1}}.f(x) = \int {\frac{x}{{\sqrt {{x^2} + 3} }}dx} \)

Đặt \(I = \int {\frac{x}{{\sqrt {{x^2} + 3} }}dx} \)

Cho hàm số f( x ) có đạo hàm liên tục trên (ảnh 1)

Khi đó ta có: I=tdtt =t+C=x2+3+C

x-1x+1.f(x)=x2+3 +C

Thay \(x = 1\) ta có: \(0 = \,2\, + \,C\, \Leftrightarrow \,C\, = \, - 2\)

x-1x+1.f(x)=x2+3 -2

Thay \(x = 0\) ta có: -f(0)=3 -2f(0)=2-3

Chọn B.

Copyright © 2021 HOCTAP247