A. 10
B
Phương pháp giải: Sử dụng phương pháp tích phân từng phần, đặt \(\left\{ {\begin{array}{*{20}{c}}{u = x + 2}\\{dv = f'(x)dx}\end{array}} \right.\)
Giải chi tiết:
Xét tích phân: \(I\, = \,\int\limits_0^2 {(x\, + \,2)f'(x)\,dx\, = \,8} \)
Đặt: \(\left\{ {\begin{array}{*{20}{c}}{u = x + 2}\\{dv = f'(x)dx}\end{array}} \right.\)\( \Rightarrow \left\{ {\begin{array}{*{20}{c}}{du = dx}\\{v = f(x)}\end{array}} \right.\) khi đó ta có:
\(I = (x\, + \,2)\,f(x)\left| {\begin{array}{*{20}{c}}2\\0\end{array}} \right.\, - \,\int\limits_0^2 {f(x)\,dx} \)
\(\begin{array}{l} \Rightarrow I\, = \,4\,f(2)\, - \,2f(0)\, - \,\int\limits_0^2 {f(x)\,dx} \\ \Rightarrow 8\, = \,5\, - \,\int\limits_0^2 {f(x)\,dx} \, \Rightarrow \,\int\limits_0^2 {f(x)\,dx} \, = \, - 3\end{array}\)
Chọn B.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247