Gọi S là tập hợp tất cả các số tự nhiên có 4 chữ số đội một khác nhau lập thành từ các chữ số

Câu hỏi :

Gọi \(S\)là tập hợp tất cả các số tự nhiên có 4 chữ số đội một khác nhau lập thành từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7. Chọn ngẫu nhiên 1 số từ tập \(S\). Tính xác suất để số được chọn có đúng 2 chữ số chẵn.

A. \(\frac{{24}}{{35}}\)

B. \(\frac{{144}}{{245}}\)

C. \(\frac{{72}}{{245}}\)

D. \(\frac{{18}}{{35}}\)

* Đáp án

D

* Hướng dẫn giải

Phương pháp giải: - Tính số phần tử của không gian mẫu

- Gọi A là biến cố: “Số được chọn có đúng 2 chữ số chẵn”, số phần tử của A bằng số các số có 4 chữ số khác nhau trong đó có 2 chữ số chẵn, hai chữ số lẻ là \({\left( {C_4^2} \right)^2}.\,4!\) (bao gồm cả số có chữ số 0 đứng đầu)

- Số các số có 4 chữ số khác nhau trong đó có 2 chữ số chẵn, hai chữ số lẻ trong đó bắt buộc chữ số 0 đứng đầu

- Tính xác suất của biến cố A: \(P(A) = \frac{{n(A)}}{{n(\Omega )}}\)

Giải chi tiết:

Gọi số tự nhiên có 4 chữ số là \(\overline {abcd} \)(\(a \ne 0\))

Không gian mẫu \(n(\Omega )\, = \,7.\,A_7^3\, = \,1470\)

Gọi A là biến cố: “số được chọn có đúng hai chữ số chẵn”

Chọn 2 chữ số chẵn trong các số 0, 1, 2, 3, 4, 5, 6, 7, có \(C_4^2\)cách, chọn 2 chữ số lẻ trong các số 0,1,2,3,4,5,6,7 có \(C_4^2\)cách

\( \Rightarrow \)số các số có 4 chữ số khác nhau trong đó có 2 chữ số chẵn, hai chữ số lẻ là \({\left( {C_4^2} \right)^2}.\,4!\) (bao gồm các số có chữ số 0 đứng đầu)

Số các số có 4 chữ số khác nhau trong đó có 2 chữ số chẵn, hai chữ số lẻ trong đó bắt buộc có chữ số 0 đứng đầu là: \(C_3^1.\,C_4^2.\,3!\)

\(\begin{array}{l} \Rightarrow n(A)\, = \,{\left( {C_4^2} \right)^2}.\,4!\, - \,C_3^1.\,C_4^2.\,3!\, = \,756\\P(A)\, = \,\frac{{n(A)}}{{n(\Omega )}}\, = \,\frac{{756}}{{1470}}\, = \,\frac{{18}}{{35}}\end{array}\)

Chọn D.

Copyright © 2021 HOCTAP247