Xét các số phức z sao cho (1 + z)(1 - iz) là số thực. Tập hợp các điểm biểu diễn của số phức z là:

Câu hỏi :

Xét các số phức \(z\) sao cho  (1+z)(1-iz) là số thực. Tập hợp các điểm biểu diễn của số phức \(z\) là:

* Đáp án

* Hướng dẫn giải

Đáp án: hai đường thẳng

Phương pháp giải:  Giả sử \(z = x + yi\)\((x,y \in \mathbb{R})\), biến đổi và kết luận

Giải chi tiết:

Giả sử \(z = x + yi\)\((x,y \in \mathbb{R})\),ta có:

\((1 + x + yi)(1 - i(x + yi)) = (1 + x + yi)(1 + y - xi)\)

\( = (1 + x)(1 + y) + (y(1 + y) - x(1 + x))i + xy\)

Do \((1 + z)(1 - iz)\) là số thực nên

\(y(1 + y) - x(1 + x) = 0 \Leftrightarrow {\left( {x + \frac{1}{2}} \right)^2} = {\left( {y + \frac{1}{2}} \right)^2} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x - y = 0}\\{x + y + 1 = 0}\end{array}} \right.\)

Vậy tập hợp các điểm biểu diễn của số phức z là hai đường thẳng

Copyright © 2021 HOCTAP247