Xét các số phức \(z\) sao cho là số thực. Tập hợp các điểm biểu diễn của số phức \(z\) là:
Đáp án: hai đường thẳng
Phương pháp giải: Giả sử \(z = x + yi\)\((x,y \in \mathbb{R})\), biến đổi và kết luận
Giải chi tiết:
Giả sử \(z = x + yi\)\((x,y \in \mathbb{R})\),ta có:
\((1 + x + yi)(1 - i(x + yi)) = (1 + x + yi)(1 + y - xi)\)
\( = (1 + x)(1 + y) + (y(1 + y) - x(1 + x))i + xy\)
Do \((1 + z)(1 - iz)\) là số thực nên
\(y(1 + y) - x(1 + x) = 0 \Leftrightarrow {\left( {x + \frac{1}{2}} \right)^2} = {\left( {y + \frac{1}{2}} \right)^2} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x - y = 0}\\{x + y + 1 = 0}\end{array}} \right.\)
Vậy tập hợp các điểm biểu diễn của số phức z là hai đường thẳng
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247