Cho hình chóp S.ABCD có đáy ABCD là hình vuông có cạnh bằng \(a\), cạnh bên SA vuông góc với mặt phẳng đáy và \(SA\, = \,a\sqrt 2 \)(hình bên). Gọi \(H\,,\,K\)lần lượt là hình chiếu vuông góc của \(A\) trên \(SB\,,\,SD\). Số đo của góc tạo bởi mặt phẳng \(\left( {AHK} \right)\) và \(\left( {ABCD} \right)\) bằng:
Đáp án:
Phương pháp giải: Sử dụng kết quả sau \(\left\{ {\begin{array}{*{20}{c}}{d \bot (P)}\\{d' \bot (Q)}\end{array}} \right. \Rightarrow \angle ((P);(Q)) = \angle (d;d')\)
Áp dụng tỉ số lượng giác của góc nhọn trong tam giác vuông để tính góc
Giải chi tiết:
Ta có: \(\left\{ {\begin{array}{*{20}{c}}{BC \bot AB}\\{BC \bot SA}\end{array}} \right. \Rightarrow BC \bot (SAB) \Rightarrow BC \bot AH\)
\(\left\{ {\begin{array}{*{20}{c}}{AH \bot SB}\\{AH \bot BC}\end{array}} \right. \Rightarrow AH \bot (SBC) \Rightarrow AH \bot SC\)
Chứng minh tương tự ta có: \(AK \bot (SCD) \Rightarrow AK \bot SC\)
\( \Rightarrow SC \bot (AHK)\)
Ta có: \(SA \bot (ABCD),SC \bot (AHK) \Rightarrow \angle ((AHK);(ABCD)) = \angle (SC;AC)\)
Vì \(ABCD\)là hình vuông cạnh \(a\)nên \(AC = a\sqrt 2 \). Lại có: \(SA\)= \(a\sqrt 2 \)nên \(\Delta SAC\)vuông cân tại \(A\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247