A.\[S = 5\pi \]
B. \[S = 3\pi \]
C. \[S = \frac{{7\pi }}{2}\]
D. \[S = \frac{{23\pi }}{6}\]
Ta có
\[\begin{array}{l}1 + sinx + 1 + sin3x = 2si{n^2}x\\ \Leftrightarrow 2 + sinx + 3sinx - 4si{n^3}x = 2si{n^2}x\\ \Leftrightarrow 4si{n^3}x + 2si{n^2}x - 4sinx - 2 = 0\end{array}\]
\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{sinx = \pm 1}\\{sinx = - \frac{1}{2}}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{cosx = 0}\\{sinx = - \frac{1}{2}}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{2} + k\pi }\\\begin{array}{l}x = - \frac{\pi }{6} + k2\pi \\x = \frac{{7\pi }}{6} + k2\pi \end{array}\end{array}} \right.\,\,\,\,(k \in Z)\)
\[ + )x = \frac{\pi }{2} + k\pi (k \in Z);x \in [0;2\pi ] \Rightarrow 0 \le \frac{\pi }{2} + k\pi \le 2\pi \]
\[ \Leftrightarrow - \frac{1}{2} \le k \le \frac{3}{2}\mathop \Leftrightarrow \limits^{k \in Z} \left\{ {\begin{array}{*{20}{c}}{k = 0}\\{k = 1}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}}{x = \frac{\pi }{2}}\\{x = \frac{{3\pi }}{2}}\end{array}} \right.\]
\[ + )x = - \frac{\pi }{6} + k2\pi (k \in Z);x \in [0;2\pi ] \Rightarrow 0 \le - \frac{\pi }{6} + k2\pi \le 2\pi \]
\[ \Leftrightarrow \frac{1}{{12}} \le k \le \frac{{13}}{{12}}\mathop \Leftrightarrow \limits^{k \in Z} k = 1 \Rightarrow x = \frac{{11\pi }}{6}\]
\[ + )x = \frac{{7\pi }}{6} + k2\pi (k \in Z);x \in [0;2\pi ] \Rightarrow 0 \le \frac{{7\pi }}{6} + k2\pi \le 2\pi \]
\[ \Leftrightarrow \frac{{ - 7}}{{12}} \le k \le \frac{5}{{12}}\mathop \Leftrightarrow \limits^{k \in Z} k = 0 \Rightarrow x = \frac{{7\pi }}{6}\]
\[ \Rightarrow S = \frac{\pi }{2} + \frac{{3\pi }}{2} + \frac{{11\pi }}{6} + \frac{{7\pi }}{6} = 5\pi \]
Đáp án cần chọn là: A
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247