Một thừa đất hình chữ nhật có chiều dài bằng 20 mét và chiều rộng bằng 10 mét, người ta giảm chiều dài \(x\) mét (với \(0\, < \,x\, < \,20\)) và tăng chiều rộng thêm 2x mét để được thửa đất mới. Tìm \(x\) để thửa đất mới có diện tích lớn nhất?
Đáp án:
Phương pháp giải: - Tính chiều dài, chiều rộng mới của thửa đất sau đó tính diện tích mới của thửa đất
- Sử dụng phương pháp hàm số tìm GTLN
Giải chi tiết:
Chiều dài mới của thửa đất là \(20 - x\)(mét)
Chiều rộng của thửa đất là \(10 + 2x\) (mét)
Khi đó diện tích mới của thửa đất là \(S = (20 - x)(10 + 2x)\)
Ta có:
\(S' = 0 \Leftrightarrow x = \frac{{15}}{2}\)
Ta có BBT như sau:
Vậy
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247