Cho dãy số (un) với un = 1− 1/ 2 + 1/ 2 − 1/ 3 +....+ 1/ n − 1/( n+1). Khi đó lim un bằng?

Câu hỏi :

Cho dãy số \[\left( {{u_n}} \right)\]với \[{u_n} = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + .... + \frac{1}{n} - \frac{1}{{n + 1}}\]. Khi đó \[lim\,{u_n}\] bằng?

A.0.    

B.\(\frac{1}{2}\)

C. 1

D. 2

* Đáp án

* Hướng dẫn giải

\[{u_n} = \frac{1}{{1.2}} + \frac{1}{{2.3}} + \frac{1}{{3.4}} + ... + \frac{1}{{n.\left( {n + 1} \right)}}\]

\[ = \frac{{2 - 1}}{{1.2}} + \frac{{3 - 2}}{{2.3}} + ... + \frac{{n + 1 - n}}{{n.\left( {n + 1} \right)}}\]

\[ = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + .... + \frac{1}{n} - \frac{1}{{n + 1}}\]

\[ = 1 - \frac{1}{{n + 1}}\]

\[ \Rightarrow \lim {u_n} = \lim \left( {1 - \frac{1}{{n + 1}}} \right) = 1.\]

Đáp án cần chọn là: C

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Giới hạn của dãy số !!

Số câu hỏi: 80

Copyright © 2021 HOCTAP247