A.\[ - \infty .\]
B. -1
C. \[ + \infty .\]
D. \[\frac{{ - 2}}{5}.\]
\[\lim {u_n} = \lim \frac{{\left( {2n + 1} \right)\left( {1 - 3n} \right)}}{{\sqrt[3]{{{n^3} + 5n - 1}}}} = \lim \frac{{ - 6{n^2} - n + 1}}{{\sqrt[3]{{{n^3} + 5n - 1}}}}\]
\[ = \lim \frac{{\frac{{ - 6{n^2} - n + 1}}{{{n^2}}}}}{{\sqrt[3]{{\frac{{{n^3} + 5n - 1}}{{{n^6}}}}}}} = \lim \frac{{ - 6 - \frac{1}{n} + \frac{1}{{{n^2}}}}}{{\sqrt[3]{{\frac{1}{{{n^3}}} + \frac{5}{{{n^5}}} - \frac{1}{{{n^6}}}}}}} = - \infty .\]
Đáp án cần chọn là: A
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247