A.Dãy \[\left( {{u_n}} \right)\]là dãy giảm tới 1 khi \[n \to + \infty \]
B.Dãy \[\left( {{u_n}} \right)\]là dãy tăng tới 1 khi \[n \to + \infty \]
C.Không tồn tại giới hạn của dãy \[\left( {{u_n}} \right)\]
D.Cả 3 đáp án trên đều sai
\[{u_2} = \frac{{2 + 1}}{2} = \frac{3}{2} = \frac{{{2^1} + 1}}{{{2^1}}}\]
\[{u_3} = \frac{{\frac{3}{2} + 1}}{2} = \frac{5}{4} = \frac{{{2^2} + 1}}{{{2^2}}}\]
\[{u_4} = \frac{{\frac{5}{4} + 1}}{2} = \frac{9}{8} = \frac{{{2^3} + 1}}{{{2^3}}}\]
Chứng minh bằng quy nạp:\[{u_{n + 1}} = \frac{{{2^n} + 1}}{{{2^n}}},\,\,\forall n = 1;2;...\,\,\,\,( * )\]
* Với\[n = 1:{u_2} = \frac{{{u_1} + 1}}{2} = \frac{{2 + 1}}{2} = \frac{{{2^1} + 1}}{{{2^1}}}\]: (*) đúng
* Giả sử (*) đúng với\[n = k \ge 1\] tức là\[{u_k} = \frac{{{2^k} + 1}}{{{2^k}}}\] ta chứng minh (*) đúng với\[n = k + 1\]tức là cần chứng minh\[{u_{k + 1}} = \frac{{{2^{k + 1}} + 1}}{{{2^{k + 1}}}}\]
Ta có :
\[{u_{k + 1}} = \frac{{{u_k} + 1}}{2} = \frac{{\frac{{{2^k} + 1}}{{{2^k}}} + 1}}{2} = \frac{{\frac{{{2^k} + 1 + {2^k}}}{{{2^k}}}}}{2} = \frac{{{{2.2}^k} + 1}}{{{2^{k + 1}}}} = \frac{{{2^{k + 1}} + 1}}{{{2^{k + 1}}}}\]
Theo nguyên lý quy nạp, ta chứng minh được (*).
Như vậy, công thức tổng quát của dãy \[({u_n})\]là:
\[{u_n} = \frac{{{2^{n - 1}} + 1}}{{{2^{n - 1}}}} = 1 + \frac{1}{{{2^{n - 1}}}},\,\,\forall n = 1;2;...\,\,\,\,( * )\]
Từ (*) ta có\[{u_{n + 1}} - {u_n} = 1 + \frac{1}{{{2^n}}} - \left( {1 + \frac{1}{{{2^{n - 1}}}}} \right)\]
\[ = \frac{1}{{{2^n}}} - \frac{1}{{{2^{n + 1}}}} < 0\,\,\forall n = 1,2,... \Rightarrow \left( {{u_n}} \right)\]là dãy giảm và
\[\lim {u_n} = \lim \left( {1 + \frac{1}{{{2^{n - 1}}}}} \right) = 1 \Rightarrow \]là dãy giảm tới 1 khi\[n \to + \infty \]
Đáp án cần chọn là: A
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247