Cho các số thực a, b thỏa

Câu hỏi :

Cho các số thực a, b thỏa \[\left| a \right| < 1,\;\;\left| b \right| < 1\]. Tìm giới hạn \[I = lim\frac{{1 + a + {a^2} + ... + {a^n}}}{{1 + b + {b^2} + ... + {b^n}}}\].

A.\[ + \infty \]

B. \[\frac{{1 - a}}{{1 - b}}\]

C. \[\frac{{1 - b}}{{1 - a}}\]

D. 1

* Đáp án

* Hướng dẫn giải

Ta có\[1,\;a,\;{a^2},\;...,\;{a^n}\] là một cấp số nhân có công bội a

\[ \Rightarrow 1 + a + {a^2} + ... + {a^n} = \frac{{1 - {a^{n + 1}}}}{{1 - a}}.\]

 Tương tự:  \[1 + b + {b^2} + ... + {b^n} = \frac{{1 - {b^{n + 1}}}}{{1 - b}}\]

\[ \Rightarrow \lim I = \lim \frac{{\frac{{1 - {a^{n + 1}}}}{{1 - a}}}}{{\frac{{1 - {b^{n + 1}}}}{{1 - b}}}} = \lim \left( {\frac{{1 - {a^{n + 1}}}}{{1 - a}}.\frac{{1 - b}}{{1 - {b^{n + 1}}}}} \right) = \lim \left( {\frac{{1 - {a^{n + 1}}}}{{1 - {b^{n + 1}}}}.\frac{{1 - b}}{{1 - a}}} \right) = \frac{{1 - b}}{{1 - a}}.\]

(Vì\[\left| a \right| < 1,\;\;\left| b \right| < 1 \Rightarrow \lim {a^{n + 1}} = \lim {b^{n + 1}} = 0\])

Đáp án cần chọn là: C

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Giới hạn của dãy số !!

Số câu hỏi: 80

Copyright © 2021 HOCTAP247