A.\[ + \infty \]
B. \[ - \infty \]
C. 0
D. 1
Ta có:\[n! < {n^n} \Rightarrow \sqrt[n]{{n!}} < \sqrt[n]{{{n^n}}}\]
\[ \Rightarrow 0 < \frac{{\sqrt[{\rm{n}}]{{n!}}}}{{\sqrt {{n^3} + 2n} }} < \frac{{\sqrt[{\rm{n}}]{{{n^n}}}}}{{\sqrt {{n^3} + 2n} }} = \frac{n}{{\sqrt {{n^3} + 2n} }}\]
Mà\[\lim 0 = 0\,;\;\,\,\lim \,\frac{n}{{\sqrt {{n^3} + 2n} }} = \lim \frac{n}{{n\sqrt {n + \frac{2}{n}} }} = \lim \frac{1}{{\sqrt {n + \frac{2}{n}} }} = 0\]
\[ \Rightarrow \lim \frac{{\sqrt[n]{{n!}}}}{{\sqrt {{n^3} + 2n} }} = 0 \Rightarrow B = 0.\]
Đáp án cần chọn là: C
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247