Cho tam giác đều ABC cạnh a. Tam giác

Câu hỏi :

Cho tam giác đều ABC cạnh a. Tam giác \[{A_1}{B_1}{C_1}\] có đỉnh là trung điểm các cạnh của tam giác ABC, tam giác \[{A_2}{B_2}{C_2}\] có các đỉnh là trung điểm các cạnh của tam giác \[{A_1}{B_1}{C_1}\],…, tam giác AnBnCnAnBnCn có các đỉnh là trung điểm các cạnh của tam giác \[{A_{n - 1}}{B_{n - 1}}{C_{n - 1}} \ldots .{\rm{ }}Goi\;P,{P_1},{P_2},...,{P_n},...\] là chu vi của các tam giác \[ABC,{A_1}{B_1}{C_1},{A_2}{B_2}{C_2},...,{A_n}{B_n}{C_n},...\] Tìm tổng \[P,{P_1},{P_2},...,{P_n},...\]

A.9a

B.6a

C.\[ + \infty \]

D.3a

* Đáp án

* Hướng dẫn giải

Bước 1:

Gọi \[{a_n}\] là cạnh của tam giác \[{A_n}{B_n}{C_n}\] với n nguyên dương.

Ta cần chứng minh cạnh của tam giác bất kì \[{A_n}{B_n}{C_n}\] bằng\[{a_n} = \frac{a}{{{2^n}}}\] ới mọi số nguyên dương n   (*)

Vì\[{A_1},{B_1},{C_1}\] là trung điểm các cạnh của tam giác ABC nên \[{a_1} = \frac{a}{2}\]

Cạnh của tam giác\[{A_1}{B_1}{C_1}\] có cạnh là\[\frac{a}{2} = \frac{a}{{{2^1}}}\]

Giả sử (*) đúng với \[n = k\]

Tức là cạnh của tam giác\[{A_k}{B_k}{C_k}\]  là\[{a_k} = \frac{a}{{{2^k}}}\]

Ta có\[{A_{k + 1}}{B_{k + 1}}{C_{k + 1}}\] có cạnh bằng một nửa cạnh của tam giác\[{A_k}{B_k}{C_k}\] nên có cạnh là\[{a_{k + 1}} = \frac{{{a_k}}}{2} = \frac{1}{2}.\frac{a}{{{2^k}}} = \frac{a}{{{2^{k + 1}}}}\]

=>(*) đúng với \[n = k + 1\]

=>(*) đúng với mọi số nguyên dương n.

=>Chu vi của tam giác\[{A_n}{B_n}{C_n}\] như giả thiết là\[{P_n} = \frac{{3a}}{{{2^n}}}\]

Bước 2:

Như vậy\[P = 3a;{P_1} = \frac{{3a}}{2};{P_2} = \frac{{3a}}{{{2^2}}};...;{P_n} = \frac{{3a}}{{{2^n}}};...\]

Dãy số\[\left( {{P_n}} \right)\]  gồm\[P,{P_1},{P_2},...\] là cấp số nhân với số hạng đầu là\[P = 3a\] công bội\[q = \frac{1}{2}\]

\[ \Rightarrow P + {P_1} + {P_2} + ... = \frac{{3a}}{{1 - \frac{1}{2}}} = 6a\]

Đáp án cần chọn là: B

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Giới hạn của dãy số !!

Số câu hỏi: 80

Copyright © 2021 HOCTAP247