Cho n = 2k + 1,k thuộc N. Khi đó:

Câu hỏi :

Cho \[n = 2k + 1,k \in N\]. Khi đó:

A.\[\mathop {\lim }\limits_{x \to + \infty } {x^n} = - \infty \]

B. \[\mathop {\lim }\limits_{x \to \pm \infty } {x^n} = + \infty \]

C. \[\mathop {\lim }\limits_{x \to - \infty } {x^n} = - \infty \]

D. \[\mathop {\lim }\limits_{x \to - \infty } {x^n} = + \infty \]

* Đáp án

* Hướng dẫn giải

Ta có:\[\mathop {\lim }\limits_{x \to - \infty } {x^k} = + \infty \]  nếu k chẵn và\[\mathop {\lim }\limits_{x \to - \infty } {x^k} = - \infty \] nếu k lẻ.

Do đó, vì \[n = 2k + 1,k \in N\] là số nguyên dương lẻ nên\[\mathop {\lim }\limits_{x \to - \infty } {x^n} = - \infty \]

Đáp án cần chọn là: C

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Giới hạn của hàm số !!

Số câu hỏi: 40

Copyright © 2021 HOCTAP247