Câu hỏi :

Cho hàm số \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{\frac{{2x}}{{\sqrt {1 - x} }}khi\,x < 1}\\{\sqrt {3{x^2} + 1} \,khi\,x \ge 1}\end{array}} \right.\). Khi đó \[\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right)\] là:

A.\[ + \infty .\]

B.2.

C.4.

D.\[ - \infty .\]

* Đáp án

* Hướng dẫn giải

\[\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \sqrt {3{x^2} + 1} = \sqrt {{{3.1}^2} + 1} = 2\]

Đáp án cần chọn là: B

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Giới hạn của hàm số !!

Số câu hỏi: 40

Copyright © 2021 HOCTAP247