A.\[\mathop {\lim }\limits_{x \to + \infty } \frac{{{x^2} + 1}}{{2{x^2} + 1}} = \frac{1}{2}\]
B. \[\mathop {\lim }\limits_{x \to - \infty } \left( {{x^2} + 3x - 1} \right) = - \infty \]
C. \[\mathop {\lim }\limits_{x \to + \infty } \frac{{x + 1}}{{2x + 1}} = \frac{1}{2}\]
D. \[\mathop {\lim }\limits_{x \to - \infty } \frac{{x + 3}}{{2x + 1}} = \frac{1}{2}\]
\[\begin{array}{*{20}{l}}{\mathop {\lim }\limits_{x \to - \infty } \left( {{x^2} + 3x - 1} \right)}\\{ = \mathop {\lim }\limits_{x \to - \infty } {x^2}\left( {1 + \frac{3}{x} - \frac{1}{{{x^2}}}} \right) = + \infty }\end{array}\]
Đáp án cần chọn là: B
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247