Nghiệm của phương trình sin x = 1/2 thỏa mãn − pi/ 2 bé hơn hoặc bằng x bé hơn hoặc bằng pi/ 2 là:

Câu hỏi :

Nghiệm của phương trình \[\sin x = \frac{1}{2}\] thỏa mãn \[ - \frac{\pi }{2} \le x \le \frac{\pi }{2}\] là:

A.\[x = \frac{{5\pi }}{6} + k2\pi \]

B. \[x = \frac{\pi }{6}\]

C. \[x = \frac{{5\pi }}{6}\]

D. \[x = \frac{\pi }{3}\]

* Đáp án

* Hướng dẫn giải

Bước 1:

Ta có:\[\sin x = \frac{1}{2} \Leftrightarrow \sin x = \sin \frac{\pi }{6}\]

Bước 2:

\(\Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{6} + k2\pi }\\{x = \frac{{5\pi }}{6} + k2\pi }\end{array}} \right.(k \in Z)\)

Bước 3:

+) Xét\[x = \frac{\pi }{6} + k2\pi \]

Ta có\[ - \frac{\pi }{2} \le x \le \frac{\pi }{2} \Leftrightarrow - \frac{\pi }{2} \le \frac{\pi }{6} + k2\pi \le \frac{\pi }{2}\]

\[\begin{array}{*{20}{l}}{ - \frac{{2\pi }}{3} \le k2\pi \le \frac{\pi }{3} \Leftrightarrow - \frac{{2\pi }}{{3.2\pi }} \le k \le \frac{\pi }{{3.2\pi }}}\\{ \Leftrightarrow - \frac{1}{3} \le k \le \frac{1}{6}}\end{array}\]

Mà\[k \in \mathbb{Z} \Rightarrow k = 0\] Thay vào x ta được:\[x = \frac{\pi }{6}\]

+) Xét\[x = \frac{{5\pi }}{6} + k2\pi \]

\[\begin{array}{*{20}{l}}{ - \frac{\pi }{2} \le x \le \frac{\pi }{2} \Leftrightarrow - \frac{\pi }{2} \le \frac{{5\pi }}{6} + k2\pi \le \frac{\pi }{2}}\\{ \Leftrightarrow - \frac{{4\pi }}{3} \le k2\pi \le - \frac{\pi }{3} \Leftrightarrow - \frac{{4\pi }}{{3.2\pi }} \le k \le - \frac{\pi }{{3.2\pi }}}\\{ \Leftrightarrow - \frac{2}{3} \le k \le - \frac{1}{6}}\end{array}\]

Mà\[k \in \mathbb{Z}\] nên không có giá trị k thỏa mãn

Vậy phương trình ban đầu có nghiệm duy nhất là\[x = \frac{\pi }{6}\]

Đáp án cần chọn là: B

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Phương trình lượng giác cơ bản !!

Số câu hỏi: 60

Copyright © 2021 HOCTAP247