Số nghiệm của phương trình

Câu hỏi :

Số nghiệm của phương trình \[2\sin \left( {x + \frac{\pi }{4}} \right) - 2 = 0\]với \[\pi \le x \le 5\pi \]là:

A.1     

B.0      

C.3

D.2

* Đáp án

* Hướng dẫn giải

Ta có:

\[2\sin \left( {x + \frac{\pi }{4}} \right) - 2 = 0 \Leftrightarrow \sin \left( {x + \frac{\pi }{4}} \right) = 1 \Leftrightarrow x + \frac{\pi }{4} = \frac{\pi }{2} + k2\pi \Leftrightarrow x = \frac{\pi }{4} + k2\pi \left( {k \in Z} \right)\]

\[\pi \le x \le 5\pi \Rightarrow \pi \le \frac{\pi }{4} + k2\pi \le 5\pi \Leftrightarrow \frac{{3\pi }}{4} \le k2\pi \le \frac{{19\pi }}{4} \Leftrightarrow \frac{3}{8} \le k \le \frac{{19}}{8} \Rightarrow k \in \left\{ {1;2} \right\}\]

Vậy phương trình có hai nghiệm trong đoạn \[\left[ {\pi ;5\pi } \right]\]Đáp án cần chọn là: D

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Phương trình lượng giác cơ bản !!

Số câu hỏi: 60

Copyright © 2021 HOCTAP247