Nghiệm của phương trình sin^2 x − sin x = 0 thỏa điều kiện: 0 < x < pi .

Câu hỏi :

Nghiệm của phương trình \[{\sin ^2}x - \sin x = 0\] thỏa điều kiện: \[0 < x < \pi .\]

A.\[x = \frac{\pi }{2}\]

B. \[x = \pi \]

C. \[x = 0\]

D. \[x = - \frac{\pi }{2}\]

* Đáp án

* Hướng dẫn giải

Bước 1:

\[si{n^2}x - sinx = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{sinx = 0}\\{sinx = 1}\end{array}} \right.\]

Bước 2:

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = k\pi }\\{x = \frac{\pi }{2} + k2\pi }\end{array}} \right.(k \in \mathbb{Z})\)

Bước 3:

Xét\[x = k\pi ,k \in \mathbb{Z}\]

Vì\[0 < x < \pi \] nên nghiệm của phương trình thỏa mãn:

\[0 < k\pi < \pi \Leftrightarrow 0 < k < 1\]

Ta không thể tìm được số nguyên nào thỏa mãn điều trên

=>Không có số k trong trường hợp này.

Xét\[x = \frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}\]

Vì\[0 < x < \pi \]nên nghiệm của phương trình thỏa mãn:

\[0 < \frac{\pi }{2} + k2\pi < \pi \Leftrightarrow - \frac{\pi }{2} < k2\pi < \frac{\pi }{2}\]

\[ \Leftrightarrow - \frac{1}{4} < k < \frac{1}{4}\]mà\[k \in \mathbb{Z} \Rightarrow k = 0\]Thay vào x ta được:

\[x = \frac{\pi }{2} + 0 = \frac{\pi }{2}\]

Vậy phương trình có 1 nghiệm duy nhất là \[x = \frac{\pi }{2}\]

Đáp án cần chọn là: A

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Phương trình lượng giác cơ bản !!

Số câu hỏi: 60

Copyright © 2021 HOCTAP247