A.\[x = \frac{\pi }{2}\]
B. \[x = \pi \]
C. \[x = 0\]
D. \[x = - \frac{\pi }{2}\]
Bước 1:
\[si{n^2}x - sinx = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{sinx = 0}\\{sinx = 1}\end{array}} \right.\]
Bước 2:
\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = k\pi }\\{x = \frac{\pi }{2} + k2\pi }\end{array}} \right.(k \in \mathbb{Z})\)
Bước 3:
Xét\[x = k\pi ,k \in \mathbb{Z}\]
Vì\[0 < x < \pi \] nên nghiệm của phương trình thỏa mãn:
\[0 < k\pi < \pi \Leftrightarrow 0 < k < 1\]
Ta không thể tìm được số nguyên nào thỏa mãn điều trên
=>Không có số k trong trường hợp này.
Xét\[x = \frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}\]
Vì\[0 < x < \pi \]nên nghiệm của phương trình thỏa mãn:
\[0 < \frac{\pi }{2} + k2\pi < \pi \Leftrightarrow - \frac{\pi }{2} < k2\pi < \frac{\pi }{2}\]
\[ \Leftrightarrow - \frac{1}{4} < k < \frac{1}{4}\]mà\[k \in \mathbb{Z} \Rightarrow k = 0\]Thay vào x ta được:
\[x = \frac{\pi }{2} + 0 = \frac{\pi }{2}\]
Vậy phương trình có 1 nghiệm duy nhất là \[x = \frac{\pi }{2}\]
Đáp án cần chọn là: A
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247