Nghiệm của phương trình sin 3 x = cos x là:

Câu hỏi :

Nghiệm của phương trình \[\sin 3x = \cos x\] là:

A.\[x = \frac{\pi }{8} + \frac{{k\pi }}{2},x = \frac{\pi }{4} + k\pi \left( {k \in Z} \right)\]

B. \[x = k2\pi ,x = \frac{\pi }{2} + k2\pi \left( {k \in Z} \right)\]

C. \[x = k\pi ,x = \frac{\pi }{4} + k\pi \left( {k \in Z} \right)\]

D. \[x = \frac{\pi }{8} + \frac{{k\pi }}{2},x = - \frac{\pi }{4} + k\pi \left( {k \in Z} \right)\]

* Đáp án

* Hướng dẫn giải

Ta có:

\[\sin 3x = \cos x \Leftrightarrow \sin 3x = \sin \left( {\frac{\pi }{2} - x} \right)\]

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{3x = (\frac{\pi }{2} - x) + k2\pi }\\{3x = \pi - (\frac{\pi }{2} - x) + k2\pi }\end{array}} \right.\)

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{4x = \frac{\pi }{2} + k2\pi }\\{2x = \frac{\pi }{2} + k2\pi }\end{array}} \right.\)

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{8} + \frac{{k\pi }}{2}}\\{x = \frac{\pi }{4} + k\pi }\end{array}} \right.(k \in Z)\)

Đáp án cần chọn là: A

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Phương trình lượng giác cơ bản !!

Số câu hỏi: 60

Copyright © 2021 HOCTAP247