A.\[k2\pi \left( {k \in Z} \right)\]
B. \[k\pi \left( {k \in Z} \right)\]
C. \[\pi + k2\pi \left( {k \in Z} \right)\]
D. Cả 3 đáp án đúng
Bước 1:
Điều kiện:\(\left\{ {\begin{array}{*{20}{c}}{cosx \ne 0}\\{cos\frac{x}{2} \ne 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x \ne \frac{\pi }{2} + k\pi }\\{\frac{x}{2} \ne \frac{\pi }{2} + k\pi }\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x \ne \frac{\pi }{2} + k\pi }\\{x \ne \pi + k2\pi }\end{array}} \right.\)
Bước 2:
Ta có: \[\tan \frac{x}{2} = \tan x \Leftrightarrow \frac{x}{2} = x + k\pi \Leftrightarrow - \frac{x}{2} = k\pi \Leftrightarrow - x = 2k\pi \]
\[ \Leftrightarrow x = - k2\pi \left( {k \in Z} \right)\]Đặt k = −l nên:\[ \Leftrightarrow x = l2\pi \left( {l \in Z} \right)\] (TMĐK)
Đáp án cần chọn là: A
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247