Phương trình cos 11 x cos 3 x = cos 17 x cos 9 x có nghiệm là:

Câu hỏi :

Phương trình \[\cos 11x\cos 3x = \cos 17x\cos 9x\] có nghiệm là:

A.\[x = \frac{{k\pi }}{6},\,\,x = \frac{{k\pi }}{{10}}\]

B. \[x = \frac{{k\pi }}{6},\,\,x = \frac{{k\pi }}{{20}}\]

C. \[x = \frac{{k\pi }}{3},\,\,x = \frac{{k\pi }}{{20}}\]

D. \[x = \frac{{k\pi }}{3},\,\,x = \frac{{k\pi }}{{10}}\]

* Đáp án

* Hướng dẫn giải

Bước 1:

\[\cos 11x\cos 3x = \cos 17x\cos 9x\]

\[ \Leftrightarrow \frac{1}{2}.\left[ {\cos \left( {11x + 3x} \right) + \cos \left( {11x - 3x} \right)} \right] = \frac{1}{2}\left[ {\cos \left( {17x + 9x} \right) + \cos \left( {17x - 9x} \right)} \right]\]

\[\begin{array}{l} \Leftrightarrow \frac{1}{2}\left( {\cos 14x + \cos 8x} \right) = \frac{1}{2}\left( {\cos 26x + \cos 8x} \right)\\ \Leftrightarrow \cos 14x + \cos 8x = \cos 26x + \cos 8x\\ \Leftrightarrow \cos 14x = \cos 26x\end{array}\]

Bước 2:

26x=14x+k2π26x=14x+k2π

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{12x = k2\pi }\\{40x = k2\pi }\end{array}} \right.\)

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{{k\pi }}{6}}\\{x = \frac{{k\pi }}{{20}}}\end{array}} \right.(k \in \mathbb{Z})\)

Vậy nghiệm của phương trình là\[x = \frac{{k\pi }}{6},\,\,x = \frac{{k\pi }}{{20}}\]

Vậy nghiệm của phương trình là\[x = \frac{{k\pi }}{6},\,\,x = \frac{{k\pi }}{{20}}\]

Đáp án cần chọn là: B

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Phương trình lượng giác cơ bản !!

Số câu hỏi: 60

Copyright © 2021 HOCTAP247