Tìm tập xác định D của hàm số sau

Câu hỏi :

Tìm tập xác định D của hàm số sau \[y = \frac{{2\sin x - 1}}{{\tan 2x + \sqrt 3 }}\].

A.\[D = \mathbb{R} \setminus \left\{ {\frac{\pi }{6} + k\frac{\pi }{2};\frac{\pi }{4} + k\frac{\pi }{2}|k \in {\rm{Z}}} \right\}\]

B. \[D = \mathbb{R} \setminus \left\{ { - \frac{\pi }{3} + k\pi ;\frac{\pi }{2} + k\pi |k \in {\rm{Z}}} \right\}\]

C. \[D = \mathbb{R} \setminus \left\{ { - \frac{\pi }{6} + k\frac{\pi }{2}|k \in {\rm{Z}}} \right\}\]

D. \[D = \mathbb{R} \setminus \left\{ { - \frac{\pi }{6} + k\frac{\pi }{2};\frac{\pi }{4} + k\frac{\pi }{2}|k \in {\rm{Z}}} \right\}\]

* Đáp án

* Hướng dẫn giải

Hàm số\[y = \frac{{2\sin x - 1}}{{\tan 2x + \sqrt 3 }}\]xác định khi

\(\left\{ {\begin{array}{*{20}{c}}{cos2x \ne 0}\\{tan2x \ne - \sqrt 3 }\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{2x \ne \frac{\pi }{2} + k\pi }\\{2x \ne - \frac{\pi }{3} + k\pi }\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x \ne \frac{\pi }{4} + \frac{{k\pi }}{2}}\\{x \ne - \frac{\pi }{6} + k\frac{\pi }{2}}\end{array}} \right.(k \in \mathbb{Z})\)

Đáp án cần chọn là: D

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Phương trình lượng giác cơ bản !!

Số câu hỏi: 60

Copyright © 2021 HOCTAP247