A.8
B.6
C.2
D.4
Ta có:
\[cos2x = \frac{1}{2} \Leftrightarrow cos2x = cos\frac{\pi }{3} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{2x = \frac{\pi }{3} + k2\pi }\\{2x = - \frac{\pi }{3} + k2\pi }\end{array}} \right. \Leftrightarrow x = \pm \frac{\pi }{6} + k\pi \,\,(k \in \mathbb{Z})\]
Trên nửa khoảng \[\left( {{0^0};{{360}^0}} \right]\]tức\[\left( {0;2\pi } \right]\] Ta sẽ có các nghiệm thỏa mãn như sau:
\[ + )\,\,\,0 < x = \frac{\pi }{6} + k\pi \le 2\pi \Leftrightarrow - \frac{1}{6} < k \le \frac{{11}}{6}\]mà \[k \in \mathbb{Z} \Rightarrow k \in \left\{ {0;1} \right\}\]Có 2 nghiệm.
\[ + )\,\,\,0 < x = - \frac{\pi }{6} + k\pi \le 2\pi \Leftrightarrow \frac{1}{6} < k \le \frac{{13}}{6}\]mà\[k \in \mathbb{Z} \Rightarrow k \in \left\{ {1;2} \right\}\]Có 2 nghiệm.
Vậy có 4 nghiệm thỏa mãn yêu cầu bài toán.
Đáp án cần chọn là: D
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247