Cho phương trình sin ( 2 x − pi/ 5 ) = 3 m 2 + m^2 . Biết x = 11pi/ 60 là một nghiệm của phương trình. Tính m.

Câu hỏi :

Cho phương trình \[\sin \left( {2x - \frac{\pi }{5}} \right) = 3{m^2} + \frac{m}{2}\]. Biết \(x = \frac{{11\pi }}{{60}}\) là một nghiệm của phương trình. Tính m.

A.\(\left[ {\begin{array}{*{20}{c}}{m = 1}\\{m = \frac{1}{2}}\end{array}} \right.\)

B. \(\left[ {\begin{array}{*{20}{c}}{m = - \frac{3}{2}}\\{m = 0}\end{array}} \right.\)

C. \(\left[ {\begin{array}{*{20}{c}}{m = - \frac{1}{4}}\\{m = \frac{2}{3}}\end{array}} \right.\)

D. \(\left[ {\begin{array}{*{20}{c}}{m = - \frac{1}{2}}\\{m = \frac{1}{3}}\end{array}} \right.\)

* Đáp án

* Hướng dẫn giải

Thay\[x = \frac{{11\pi }}{{60}}\]  vào phương trình ta có:

\[sin(2.\frac{{11\pi }}{{60}} - \frac{\pi }{5}) = 3{m^2} + \frac{m}{2} \Leftrightarrow sin\frac{\pi }{6} = 3{m^2} + \frac{m}{2}\]

\[ \Leftrightarrow \frac{1}{2} = 3{m^2} + \frac{m}{2} \Leftrightarrow 6{m^2} + m = 1 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m = \frac{1}{3}}\\{m = - \frac{1}{2}}\end{array}} \right.\]

Đáp án cần chọn là: D

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Phương trình lượng giác cơ bản !!

Số câu hỏi: 60

Copyright © 2021 HOCTAP247