A.\(\left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{3} + k\pi }\\{x = \frac{\pi }{6} + k\pi }\end{array}} \right.(k \in Z)\)
B. \(\left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{3} + k2\pi }\\{x = \frac{\pi }{6} + k2\pi }\end{array}} \right.(k \in Z)\)
C. \(\left[ {\begin{array}{*{20}{c}}{x = - \frac{\pi }{3} + k\pi }\\{x = - \frac{\pi }{6} + k\pi }\end{array}} \right.(k \in Z)\)
D. \(\left[ {\begin{array}{*{20}{c}}{x = - \frac{\pi }{3} + k2\pi }\\{x = \frac{\pi }{6} + k\pi }\end{array}} \right.(k \in Z)\)
ĐK: \[\sin x \ne 0 \Leftrightarrow x \ne k\pi \,\,\left( {k \in Z} \right)\]
\[\sqrt 3 {\cot ^2}x - 4\cot x + \sqrt 3 = 0\]
Đặt cotx=t khi đó phương trình có dạng
\[\sqrt 3 {t^2} - 4t + \sqrt 3 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{t = \frac{1}{{\sqrt 3 }}}\\{t = \sqrt 3 }\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{cotx = \frac{1}{{\sqrt 3 }}}\\{cotx = \sqrt 3 }\end{array}} \right.\]
\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{3} + k\pi }\\{x = \frac{\pi }{6} + k\pi }\end{array}} \right.(k \in Z)(tm)\)
Đáp án cần chọn là: A
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247