A.0
B.1
C.2
D.3
Bước 1:
Với\[a = 1;b = \sqrt 3 - 2;c = 1\] ta có:
\[\begin{array}{*{20}{l}}{\sin x + \left( {\sqrt 3 - 2} \right)\cos x = 1}\\{ \Leftrightarrow \frac{1}{{\sqrt {8 - 4\sqrt 3 } }}\sin x + \frac{{\sqrt 3 - 2}}{{\sqrt {8 - 4\sqrt 3 } }}\cos x}\\{ = \frac{1}{{\sqrt {8 - 4\sqrt 3 } }}}\end{array}\]
Đặt \[\frac{1}{{\sqrt {8 - 4\sqrt 3 } }} = \cos \alpha \Rightarrow \frac{{\sqrt 3 - 2}}{{\sqrt {8 - 4\sqrt 3 } }} = \sin \alpha \] Khi đó phương trình tương đương:
\[\sin x\cos \alpha + \cos x\sin \alpha = \cos \alpha \]
Bước 2:
Vì \[\alpha \ne 0 \Rightarrow \]có 2 vị trí biểu diễn nghiệm của phương trình.
Đáp án cần chọn là: C
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247