A.\[ - \frac{{5{\pi ^2}}}{{12}}\]
B. \[ - \frac{{5{\pi ^2}}}{{144}}\]
C. \[\frac{{5{\pi ^2}}}{{144}}\]
D. \[\frac{{{\pi ^2}}}{{12}}\]
Bước 1:
\[\sin x + \sqrt 3 \cos x = \sqrt 2 \Leftrightarrow \frac{1}{2}\sin x + \frac{{\sqrt 3 }}{2}\cos x = \frac{{\sqrt 2 }}{2}\]
\[\Leftrightarrow \sin x\cos \frac{\pi }{3} + \cos x\sin \frac{\pi }{3} = \frac{{\sqrt 2 }}{2} \Leftrightarrow \sin \left( {x + \frac{\pi }{3}} \right) = \sin \frac{\pi }{4}\]
Bước 2:
\(\Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x + \frac{\pi }{3} = \frac{\pi }{4} + k2\pi }\\{x + \frac{\pi }{3} = \frac{\pi }{4} + k2\pi }\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = - \frac{\pi }{{12}} + k2\pi }\\{x = \frac{{5\pi }}{{12}} + k2\pi }\end{array}} \right.(k \in \mathbb{Z})\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\alpha = - \frac{\pi }{{12}}}\\{\beta = \frac{{5\pi }}{{12}}}\end{array}} \right.\)
(Vì\[ - \frac{\pi }{{12}}\] và\[\frac{{5\pi }}{{12}}\] đều thỏa mãn điều kiện đề bài)
\[ \Rightarrow \alpha .\beta \; = \frac{{ - 5{\pi ^2}}}{{144}}\]
Đáp án cần chọn là: B
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247