A.\[x = k\pi \,\,\left( {k \in \mathbb{Z}} \right)\]
B. \[x = \frac{\pi }{2} + k\pi \,\,\left( {k \in \mathbb{Z}} \right)\]
C. \[x = \frac{\pi }{6} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\]
D. Tất cả đều đúng.
Bước 1:
\[\begin{array}{*{20}{l}}{{{\sin }^3}x + {{\cos }^3}x = \sin x - \cos x}\\{ \Leftrightarrow {{\cos }^3}x + \cos x = \sin x - {{\sin }^3}x}\\{ \Leftrightarrow \cos x\left( {{{\cos }^2}x + 1} \right) = \sin x\left( {1 - {{\sin }^2}x} \right)}\\{ \Leftrightarrow \cos x\left( {\frac{{1 + \cos 2x}}{2} + 1} \right) = \sin x.{{\cos }^2}x}\end{array}\]
\[\Leftrightarrow \cos x\left( {\frac{{1 + \cos 2x}}{2} + 1 - \sin x\cos x} \right) = 0\]
\[\begin{array}{*{20}{l}}{ \Leftrightarrow \cos x.\frac{{1 + \cos 2x + 2 - \sin 2x}}{2} = 0}\end{array}\]
\[\Leftrightarrow \cos x\left( {1 + \cos 2x + 2 - \sin 2x} \right) = 0\]
\[\Leftrightarrow \cos x\left( { - \sin 2x + \cos 2x + 3} \right) = 0\]
\(\Leftrightarrow \left[ {\begin{array}{*{20}{c}}{cosx = 0(1)}\\{ - sin2x + cos2x + 3 = 0(2)}\end{array}} \right.\)
Bước 2:
\[\left( 1 \right) \Leftrightarrow x = \frac{\pi }{2} + k\pi \left( {k \in \mathbb{Z}} \right)\]
Xét (2) ta có:\(\left\{ {\begin{array}{*{20}{c}}{a = - 1}\\{b = 1}\\{c = - 3}\end{array}} \right. \Rightarrow {a^2} + {b^2} < {c^2}\)
⇒⇒ phương trình (2) vô nghiệm.
Vậy nghiệm của phương trình là:\[x = \frac{\pi }{2} + k\pi \,\,\left( {k \in \mathbb{Z}} \right)\]Đáp án cần chọn là: B
</>
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247