Các giá trị nguyên dương nhỏ hơn 5 của m để phương trình

Câu hỏi :

Các giá trị nguyên dương nhỏ hơn 5 của m để phương trình \[\tan x + \cot x = m\] có nghiệm \[x \in (0;\frac{\pi }{2})\;\] có tổng là:

A.9

B.3

C.6

D.7

* Đáp án

* Hướng dẫn giải

Với \[x \in \left( {0;\frac{\pi }{2}} \right)\] ta có:\(\left\{ {\begin{array}{*{20}{c}}{sinx >0}\\{cosx >0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{tanx >0}\\{cotx >0}\end{array}} \right.\)

Ta có:\[\tan x + \cot x = \tan x + \frac{1}{{\tan x}} \ge 2\sqrt {\tan x.\frac{1}{{\tan x}}} = 2\] (BĐT Cauchy)

Phương trình có nghiệm\[ \Leftrightarrow m \ge 2\]

Kết hợp điều kiện ta có:\(\left\{ {\begin{array}{*{20}{c}}{2 \le m < 5}\\{m \in {Z^ + }}\end{array}} \right. \Rightarrow m \in \{ 2;3;4\} \)

Vậy tổng các giá trị của m thỏa mãn là 2+3+4=9

Đáp án cần chọn là: A

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Phương trình lượng giác thường gặp !!

Số câu hỏi: 61

Copyright © 2021 HOCTAP247