A.\[x = \frac{\pi }{9} + \frac{{k2\pi }}{3};\left( {k \in \mathbb{Z}} \right)\]
B. \[x = \frac{\pi }{{18}} + \frac{{k\pi }}{6};\left( {k \in \mathbb{Z}} \right)\]
C. \[x = \pm \frac{\pi }{6} + \frac{{k\pi }}{2}\,\,\left( {k \in \mathbb{Z}} \right)\]
D. \[x = \frac{\pi }{{18}} + \frac{{k\pi }}{3};\,\,x = - \frac{\pi }{6} + \frac{{k\pi }}{2}\,\,\left( {k \in \mathbb{Z}} \right)\]
\[\begin{array}{l}\sqrt 3 cos5x - 2sin3xcos2x - sinx = 0\\ \Leftrightarrow \sqrt 3 cos5x - (sin5x + sinx) - sinx = 0\end{array}\]
\[ \Leftrightarrow \sqrt 3 cos5x - sin5x = 2sinx\]
\[ \Leftrightarrow \frac{{\sqrt 3 }}{2}cos5x - \frac{1}{2}sin5x = sinx\]
\[ \Leftrightarrow sin\frac{\pi }{3}cos5x - cos\frac{\pi }{3}sin5x = sinx\]
\[ \Leftrightarrow sin(\frac{\pi }{3} - 5x) = sinx\]
\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\frac{\pi }{3} - 5x = x + k2\pi }\\{\frac{\pi }{3} - 5x = \pi - x + k2\pi }\end{array}} \right.\)
\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{{18}} + \frac{{k\pi }}{3}}\\{x = - \frac{\pi }{6} + \frac{{k\pi }}{2}}\end{array}} \right.(k \in \mathbb{Z})\)
Vậy nghiệm của phương trình là \[x = \frac{\pi }{{18}} + \frac{{k\pi }}{3};\,\,x = - \frac{\pi }{6} + \frac{{k\pi }}{2}\,\,\left( {k \in \mathbb{Z}} \right)\]
Đáp án cần chọn là: D
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247