Giải phương trình sin 18 x cos 13 x = sin 9 x cos 4 x

Câu hỏi :

Giải phương trình \[\sin 18x\cos 13x = \sin 9x\cos 4x\]

A.\[x = \frac{{k\pi }}{{18}};\,\,x = \frac{{k\pi }}{{22}}\,\,\left( {k \in \mathbb{Z}} \right)\]

B. \[x = \frac{{k\pi }}{9};\,\,x = \frac{\pi }{{44}} + \frac{{k\pi }}{{22}}\,\,\left( {k \in \mathbb{Z}} \right)\]

C. \[x = \frac{\pi }{3} + \frac{{k\pi }}{{18}};\,\,x = \frac{\pi }{{22}} + \frac{{k\pi }}{{22}}\,\,\left( {k \in \mathbb{Z}} \right)\]

D. \[x = \frac{{k\pi }}{3};\,\,x = \frac{\pi }{{44}} + \frac{{k\pi }}{{44}}\,\,\left( {k \in \mathbb{Z}} \right)\]

* Đáp án

* Hướng dẫn giải

\[\sin 18x\cos 13x = \sin 9x\cos 4x\]

\[ \Leftrightarrow \frac{1}{2}(sin31x + sin5x) = \frac{1}{2}(sin13x + sin5x)\]

\[ \Leftrightarrow sin31x + sin5x = sin13x + sin5x\]

\[ \Leftrightarrow sin31x = sin13x\]

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{31x = 13x + k2\pi }\\{31x = \pi - 13x + k2\pi }\end{array}} \right.\)

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{18x = k2\pi }\\{44x = \pi + k2\pi }\end{array}} \right.\)

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{{k\pi }}{9}}\\{x = \frac{\pi }{{44}} + \frac{{k\pi }}{{22}}}\end{array}} \right.(k \in \mathbb{Z})\)

Vậy nghiệm của phương trình là\[x = \frac{{k\pi }}{9};\,\,x = \frac{\pi }{{44}} + \frac{{k\pi }}{{22}}\,\,\left( {k \in \mathbb{Z}} \right)\]

Đáp án cần chọn là: B

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Phương trình lượng giác thường gặp !!

Số câu hỏi: 61

Copyright © 2021 HOCTAP247