Tìm tập nghiệm S của phương trình

Câu hỏi :

Tìm tập nghiệm S của phương trình \[lo{g_2}({x^2} - 4x + 3) = lo{g_2}(4x - 4)\]

A.\[S = \left\{ {1\,\,;\,7} \right\}.\]

B. \[S = \left\{ {\,7\,} \right\}.\]

C. \[S = \left\{ {\,1\,} \right\}.\]

D. \[S = \left\{ {\,3\,;\,7} \right\}.\]

* Đáp án

* Hướng dẫn giải

Điều kiện:\(\left\{ {\begin{array}{*{20}{c}}{{x^2} - 4x + 3 > 0}\\{4x - 4 > 0}\end{array}} \right. \Leftrightarrow x > 3.\)

\[lo{g_2}({x^2} - 4x + 3) = lo{g_2}(4x - 4) \Leftrightarrow {x^2} - 4x + 3 = 4x - 4\]

\(\left[ {\begin{array}{*{20}{c}}{x = 1(l)}\\{x = 7}\end{array}} \right.\)

Vậy\[S = \left\{ 7 \right\}\]

Đáp án cần chọn là: B

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Phương trình logarit và một số phương pháp giải !!

Số câu hỏi: 35

Copyright © 2021 HOCTAP247