Trang chủ Đề thi & kiểm tra Khác Phương trình logarit và một số phương pháp giải !!

Phương trình logarit và một số phương pháp giải !!

Câu 1 : Giá trị của x thỏa mãn \[lo{g_{\frac{1}{2}}}(3 - x) = 2\;\] là

A.\[x = 3 + \sqrt 2 \]

b. \[x = \frac{{ - 11}}{4}\]

c. \[x = 3 - \sqrt 2 \]

d. \[x = \frac{{11}}{4}\]

Câu 2 : Tập nghiệm của phương trình \[{\log _2}\left( {{x^2} - 1} \right) = {\log _2}2x\] là:

A.\[\left\{ {\frac{{1 + \sqrt 2 }}{2}} \right\}\]

b. \[\left\{ {2;41} \right\}\]

c. \[\left\{ {1 - \sqrt 2 ;1 + \sqrt 2 } \right\}\]

d. \[\left\{ {1 + \sqrt 2 } \right\}\]

Câu 3 :

Giải phương trình \[{\log _3}\left( {2x - 1} \right) = 2\] , ta có nghiệm là:


A.\[x = 15\]



B. \[x = \frac{1}{5}\]


C. \[x = 25\]

D. \[x = 5\]

Câu 4 : Tìm tập nghiệm S của phương trình \[{\log _2}\left( {x - 1} \right) + {\log _2}\left( {x + 1} \right) = 3\].

A.\[S = \left\{ { - 3;3} \right\}\]

B. \[S = \left\{ {\sqrt {10} } \right\}\]

C. \[S = \left\{ 3 \right\}\]

D. \[S = \left\{ { - \sqrt {10} ;\sqrt {10} } \right\}\]

Câu 5 : Tìm tập nghiệm S của phương trình \[lo{g_2}({x^2} - 4x + 3) = lo{g_2}(4x - 4)\]

A.\[S = \left\{ {1\,\,;\,7} \right\}.\]

B. \[S = \left\{ {\,7\,} \right\}.\]

C. \[S = \left\{ {\,1\,} \right\}.\]

D. \[S = \left\{ {\,3\,;\,7} \right\}.\]

Câu 6 :

Giải phương trình  \[{\log _3}\left( {x + 2} \right) + {\log _9}{\left( {x + 2} \right)^2} = \frac{5}{4}\]


A.x=1          



B.\[x = \sqrt[8]{{{3^5}}} - 2\]


C. \[x = \sqrt[4]{{{3^5}}} - 2\]

D. \[x = \sqrt[4]{3} - 2.\]

Câu 7 : Tập hợp nghiệm của phương trình \[{\log _3}\left( {{9^{50}} + 6{x^2}} \right) = {\log _{\sqrt 3 }}\left( {{3^{50}} + 2x} \right)\] là:

A.\[\left\{ {0;1} \right\}\]

B. \[\left\{ {0;{{2.3}^{50}}} \right\}\]

C. \[\left\{ 0 \right\}\]

d. R

Câu 9 :

Giải phương trình \[{\log _4}(x + 1) + {\log _4}(x - 3) = 3\]


A.\[x = 1 \pm 2\sqrt {17} \]



B. \[x = 1 + 2\sqrt {17} \]


C. \[x = 33\]

D. \[x = 5\]

Câu 11 : Cho hai số thực dương a và b thỏa mãn \[lo{g_4}a = lo{g_6}b = lo{g_9}\left( {a + b} \right).\] Tính tỉ số \(\frac{a}{b}\).

A.\[\frac{{ - 1 + \sqrt 5 }}{2}.\]

B. \[\frac{{ - 1 - \sqrt 5 }}{2}.\]

C. \[\frac{{1 + \sqrt 5 }}{2}.\]

D. \(\frac{1}{2}\)

Câu 13 : Giả sử m là số thực sao cho phương trình \[log_3^2x - (m + 2)lo{g_3}x + 3m - 2 = 0\] có hai nghiệm \[{x_1};{x_2}\] phân biệt thỏa mãn \[{x_1}.{x_2} = 9\].

A.\[m \in \left( {3;4} \right)\]

B. \[m \in \left( {4;6} \right)\]

C. \[m \in \left( { - 1;1} \right)\]

D. \[m \in \left( {1;3} \right)\]

Câu 14 : Cho phương trình \[{\log _3}x.{\log _5}x = {\log _3}x + {\log _5}x\]. Khẳng định nào sau đây là đúng?

A.Phương trình có một nghiệm hữu tỉ và một nghiệm vô tỉ

B.Phương trình có một nghiệm duy nhất

C.Phương trình vô nghiệm         

D.Tổng các nghiệm của phương trình là một số chính phương

Câu 15 : Tìm tất cả các giá trị thực của m để phương trình \[2lo{g_2}|x| + lo{g_2}|x + 3| = m\;\] có 3 nghiệm thực phân biệt.

A.\[m \in \left( {0;2} \right)\]

B. \[m \in \left\{ {0;2} \right\}\]

C. \[m \in \left( { - \infty ;2} \right)\]

D. \[m \in \left\{ 2 \right\}\]

Câu 17 : Tìm tập hợp tất cả các giá trị của tham số m để phương trình  \[lo{g_2}x - lo{g_2}(x - 2) = m\] có nghiệm

A.\[1 \le m < + \infty \]

B. \[1 < m < + \infty \]

C. \[0 \le m < + \infty \]

D. \[0 < m < + \infty \]

Câu 18 : Cho x>0; \[x \ne 1\] thỏa mãn biểu thức \[\frac{1}{{lo{g_2}x}} + \frac{1}{{lo{g_3}x}} + ... + \frac{1}{{lo{g_{2017}}x}} = M\;\]. Khi đó x bằng:

A.\[x = \sqrt[M]{{2017!}} - 1\]

B. \[x = \sqrt[M]{{2018!}}\]

C. \[x = \sqrt[M]{{2016!}}\]

D. \[x = \sqrt[M]{{2017!}}\]

Câu 19 :

Giải phương trình: \[\mathop \smallint \limits_0^2 \left( {t - {{\log }_2}x} \right)dt = 2{\log _2}\frac{2}{x}\] (ẩn x)


A.\[x \in (0; + \infty )\]



B. \[x \in \{ 1\} \]


C. \[x \in \left\{ {1;4} \right\}\]

D. \[x \in \left\{ {1;2} \right\}\]

Câu 21 : Tìm tập nghiệm của phương trình  \[{\log _3}x + \frac{1}{{{{\log }_9}x}} = 3\]

A.\[\left\{ {1;2} \right\}\]

B. \[\left\{ {\frac{1}{3};9} \right\}\]

C. \[\left\{ {\frac{1}{3};3} \right\}\]

D. \[\left\{ {3;9} \right\}\]

Câu 23 : Tìm m để phương trình \[mln(1 - x) - lnx = m\] có nghiệm \[x \in \left( {0;1} \right)\]

A.\[m \in (0; + \infty )\]

B. \[m \in (1;e)\]

C. \[m \in ( - \infty ;0)\]

D. \[m\, \in ( - \infty ; - 1)\]

Câu 35 :

Giải phương trình \[{\log _2}\left( {{2^x} - 1} \right).{\log _4}\left( {{2^{x + 1}} - 2} \right) = 1\] Ta có nghiệm:


A. \[x = {\log _2}3\] và  \[x = {\log _2}5\]



B.x=1 và x=−2



C. \[x = {\log _2}3\] và \[x = {\log _2}\frac{5}{4}\]



D.x=1 và x=2 


Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).

Copyright © 2021 HOCTAP247