Hỏi có bao nhiêu giá trị m nguyên trong đoạn

Câu hỏi :

Hỏi có bao nhiêu giá trị m  nguyên trong đoạn \[\left[ { - 2017;2017} \right]\;\]để phương trình \[logmx = 2log(x + 1)\;\;\] có nghiệm duy nhất?

A.2017

B.4014

C.2018

D.4015

* Đáp án

* Hướng dẫn giải

ĐK: \[x > - 1;mx > 0\]

\[\begin{array}{*{20}{l}}{\log (m{\rm{x}}) = 2\log (x + 1) \Leftrightarrow m{\rm{x}} = {{(x + 1)}^2} \Leftrightarrow {x^2} + (2 - m)x + 1 = 0}\\{{\rm{\Delta }} = {m^2} - 4m + 4 - 4 = {m^2} - 4m}\end{array}\]

Để phương trình đã cho có nghiệm duy nhất thì có 2 TH:

TH1: Phương trình trên có nghiệm duy nhất: \[{m^2} = 4m \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m = 0}\\{m = 4}\end{array}} \right.\]Tuy nhiên giá trị m=0 loại do khi đó nghiệm là x=−1.

TH2: Phương trình trên có 2 nghiệm thỏa: \[{x_1} \le - 1 < {x_2}\]

Nếu có \[{x_1} = - 1 \to 1 - (2 - m) + 1 = 0 \to m = 0\] thay lại vô lý

\[{x_1} < - 1 < {x_2} \to ({x_1} + 1)({x_2} + 1) < 0 \Leftrightarrow {x_1}{x_2} + {x_1} + {x_2} + 1 < 0 \to 1 + m - 2 + 1 < 0 \Leftrightarrow m < 0.\]

Như vậy sẽ có các giá trị \[ - 2017; - 2016; \ldots \ldots - 1\] và 4.

Có 2018 giá trị.

Đáp án cần chọn là: C

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Phương trình logarit và một số phương pháp giải !!

Số câu hỏi: 35

Copyright © 2021 HOCTAP247