Gọi x 1 , x 2 là các nghiệm của phương trình ( log 1/3 x )^2 − ( căn bậc hai của 3 + 1 ) log 3 x + căn bậc hai của 3 = 0 . Khi đó tích x 1 , x 2 bằng:

Câu hỏi :

Gọi \[{x_1},{x_2}\] là các nghiệm của phương trình \[{\left( {{{\log }_{\frac{1}{3}}}x} \right)^2} - \left( {\sqrt 3 + 1} \right){\log _3}x + \sqrt 3 = 0\]. Khi đó tích \[{x_1},{x_2}\] bằng:

A.\[{3^{\sqrt 3 + 1}}\]

B. \[{3^{ - \sqrt 3 }}\]

C. 3

D. \[{3^{\sqrt 3 }}\]

* Đáp án

* Hướng dẫn giải

\[{\left( {{{\log }_{\frac{1}{3}}}x} \right)^2} - \left( {\sqrt 3 + 1} \right){\log _3}x + \sqrt 3 = 0\]điều kiện của phương trình là x>0

\[ \Leftrightarrow {\left( {{{\log }_3}x} \right)^2} - \left( {\sqrt 3 + 1} \right){\log _3}x + \sqrt 3 = 0\]

Đặt \[t = {\log _3}x\] phương trình trở thành:

\[{t^2} - (\sqrt 3 + 1)t + \sqrt 3 = 0 \Rightarrow \left[ {\begin{array}{*{20}{c}}{t = 1}\\{t = \sqrt 3 }\end{array}} \right.\]

\( \Rightarrow \left[ {\begin{array}{*{20}{c}}{lo{g_3}x = 1}\\{lo{g_3}x = \sqrt 3 }\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 3}\\{x = {3^{\sqrt 3 }}}\end{array}} \right. \Rightarrow {x_1}.{x_2} = {3.3^{\sqrt 3 }} = {3^{\sqrt 3 + 1}}\)

Đáp án cần chọn là: A

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Phương trình logarit và một số phương pháp giải !!

Số câu hỏi: 35

Copyright © 2021 HOCTAP247