Tìm tất cả các giá trị thực của m để phương trình

Câu hỏi :

Tìm tất cả các giá trị thực của m để phương trình \[2lo{g_2}|x| + lo{g_2}|x + 3| = m\;\] có 3 nghiệm thực phân biệt.

A.\[m \in \left( {0;2} \right)\]

B. \[m \in \left\{ {0;2} \right\}\]

C. \[m \in \left( { - \infty ;2} \right)\]

D. \[m \in \left\{ 2 \right\}\]

* Đáp án

* Hướng dẫn giải

TXĐ : D=R.

\[2{\log _2}\left| x \right| + {\log _2}\left| {x + 3} \right| = m \Leftrightarrow {\log _2}{\left| x \right|^2} + {\log _2}\left| {x + 3} \right| = m\]

\[ \Leftrightarrow {\log _2}\left( {{{\left| x \right|}^2}.\left| {x + 3} \right|} \right) = m \Leftrightarrow {\left| x \right|^2}.\left| {x + 3} \right| = {2^m}\]

\[ \Leftrightarrow {x^2}.\left| {x + 3} \right| = {2^m}\]

Xét hàm\[f(x) = {x^2}.\left| {x + 3} \right|\]Ta có : \[f(x) = {x^2}.\left| {x + 3} \right| = \left| {{x^3} + 3{x^2}} \right|\]

Tìm tất cả các giá trị thực của m để phương trình  (ảnh 1)

Để phương trình có 3 nghiệm phân biệt thì \[{2^m} = 4 \Leftrightarrow m = 2\]

Đáp án cần chọn là: D

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Phương trình logarit và một số phương pháp giải !!

Số câu hỏi: 35

Copyright © 2021 HOCTAP247