A.\[a = {b^2}\]
B. \[a = {b^2}\]hoặc\[{a^3} = {b^2}\]
C. \[{a^3} = {b^2}\]
D. \[x = ab\]
\[4\log _a^2x - 8{\log _b}x.{\log _a}x + 3\log _b^2x = 0\]
Ta có:
\[\;\Delta \prime = {(4lo{g_b}x)^2} - 3.4.lo{g_b}x = 4log_b^2x > 0\]
\( \Rightarrow \left[ {\begin{array}{*{20}{c}}{lo{g_a}x = \frac{3}{2}lo{g_b}x}\\{lo{g_a}x = \frac{1}{2}lo{g_b}x}\end{array}} \right.\)
Suy ra
\[{\log _a}x = \frac{3}{2}{\log _b}x \Rightarrow {\log _a}x = {\log _{\sqrt[3]{{{b^2}}}}}x \Rightarrow a = \sqrt[3]{{{b^2}}} \Rightarrow {a^3} = {b^2}\]
\[{\log _a}x = \frac{1}{2}{\log _b}x \Rightarrow {\log _a}x = {\log _{{b^2}}}x \Rightarrow a = {b^2}\]
Đáp án cần chọn là: B
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247