Giải phương trình: \[\mathop \smallint \limits_0^2 \left( {t - {{\log }_2}x} \right)dt = 2{\log _2}\frac{2}{x}\] (ẩn x)
A.\[x \in (0; + \infty )\]
B. \[x \in \{ 1\} \]
C. \[x \in \left\{ {1;4} \right\}\]
Ta có:\[\;\int\limits_0^2 {(t - lo{g_2}x)dt} = \left( {\frac{{{t^2}}}{2} - lo{g_2}x.t} \right)\left| {_0^2} \right. = 2 - 2lo{g_2}x\]
Phương trình:\[2 - 2{\log _2}x = 2{\log _2}\frac{2}{x}\] có điều kiện là x>0
\[ \Leftrightarrow {\log _2}\frac{2}{x} + {\log _2}x = 1 \Leftrightarrow {\log _2}\left( {\frac{2}{x}.x} \right) = 1\] (luôn đúng)
Vậy tập nghiệm của phương trình là\[(0; + \infty )\]
Đáp án cần chọn là: A
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247