Câu hỏi :

Số nghiệm của phương trình \[{\log _3}\left| {{x^2} - \sqrt 2 x} \right| = {\log _5}\left( {{x^2} - \sqrt 2 x + 2} \right)\] là

A.3

B.2

C.1

D.4

* Đáp án

* Hướng dẫn giải

Đặt \[{x^2} - \sqrt 2 x = t\]  khi đó\[{\log _3}|t| = {\log _5}(t + 2)(t > - 2;t \ne 0)\]

Đặt\[\;lo{g_3}|t| = lo{g_5}(t + 2) = a \Rightarrow \left\{ {\begin{array}{*{20}{c}}{|t| = {3^a}}\\{t + 2 = {5^a}}\end{array}} \right.\]

\[ \Rightarrow |{5^a} - 2| = {3^a} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{{5^a} - 2 = - {3^a}}\\{{5^a} - 2 = {3^a}}\end{array}} \right. \Rightarrow \left[ {\begin{array}{*{20}{c}}{{5^a} + {3^a} = 2\left( 1 \right)}\\{{5^a} = {3^a} + 2\left( 2 \right)}\end{array}} \right.\]

Xét (1):\[f(a) = {5^a} + {3^a} \Rightarrow f'(a) = {5^a}\ln 5 + {3^a}\ln 3 > 0(\forall a \in R)\] nên hàm số đồng biến trên R

Mặt khác\[f(0) = 2\]  do đó phương trình\[f(a) = f(0)\] có 1 nghiệm duy nhất\[a = 0 \Rightarrow t = - 1\]

Suy ra: \[{x^2} - \sqrt 2 x + 1 = 0\] (vô nghiệm)

Xét (2) \[ \Leftrightarrow {\left( {\frac{3}{5}} \right)^a} + 2.{\left( {\frac{1}{5}} \right)^a} = 1\]

Đặt

\[g(a) = {\left( {\frac{3}{5}} \right)^a} + 2.{\left( {\frac{1}{5}} \right)^a} \Rightarrow g'(a) = {\left( {\frac{3}{5}} \right)^a}\ln \frac{3}{5} + 2.{\left( {\frac{1}{5}} \right)^a}\ln \frac{1}{5} < 0(\forall a \in R)\]

Nên hàm số g(a) nghịch biến trên R do đó phương trình g(a)=1 có tối đa 1 nghiệm.

Mà g(a)=g(1) nên a=1

Suy ra \[t = 3 \Rightarrow {x^2} - \sqrt 2 x - 3 = 0\] có 2 nghiệm phân biệt thỏa mãn điều kiện

Vậy phương trình đã cho có 2 nghiệm.

Đáp án cần chọn là: B

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Phương trình logarit và một số phương pháp giải !!

Số câu hỏi: 35

Copyright © 2021 HOCTAP247