Hỏi phương trình 2 log 3 ( cot x ) = log 2 ( cos x ) có bao nhiêu nghiệm trong khoảng ( 0 ; 2017 pi ) .

Câu hỏi :

Hỏi phương trình \[2{\log _3}\left( {\cot x} \right) = {\log _2}\left( {\cos x} \right)\]có bao nhiêu nghiệm trong khoảng \[\left( {0;2017\pi } \right).\]

A.1009 nghiệm

B.1008 nghiệm.

C.2017 nghiệm

D.2018 nghiệm.

* Đáp án

* Hướng dẫn giải

Điều kiện : \(\left\{ {\begin{array}{*{20}{c}}{cotx > 0}\\{cosx > 0}\end{array}} \right.\left( 1 \right)\)

Ta có :\[2{\log _3}\left( {\cot x} \right) = {\log _2}\left( {\cos x} \right) \Leftrightarrow {\log _3}{\left( {\cot x} \right)^2} = {\log _2}\left( {\cos x} \right) = t\]

\( \Rightarrow \left\{ {\begin{array}{*{20}{c}}{{{(cotx)}^2} = {3^t}}\\{co{s^2}x = {4^t}}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}}{\frac{{co{s^2}x}}{{si{n^2}x}} = {3^t}}\\{co{s^2}x = {4^t}}\end{array}} \right.\)

\[ \Rightarrow \frac{{{4^t}}}{{1 - {4^t}}} = {3^t} \Leftrightarrow {4^t} - {3^t} + {12^t} = 0 \Leftrightarrow {\left( {\frac{4}{3}} \right)^t} + {4^t} = 1\]

Đặt \[f(t) = {\left( {\frac{4}{3}} \right)^t} + {\left( 4 \right)^t} \Rightarrow f'(t) = {\left( {\frac{4}{3}} \right)^t}\ln \frac{4}{3} + {\left( 4 \right)^t}\ln 4 > 0\]suy ra\[f(t) = 1\]có tối đa 1 nghiệm.

Nhận thấy t=−1 là nghiệm của phương trình

\[ \Rightarrow {\log _2}\left( {\cos x} \right) = - 1 \Rightarrow \cos x = \frac{1}{2} \Rightarrow x = \pm \frac{\pi }{3} + k2\pi \Rightarrow x = \frac{\pi }{3} + k2\pi \]( do đk (1)).

Ta có : \[0 < \frac{\pi }{3} + k2\pi < 2017\pi \Leftrightarrow - \frac{1}{6} < k < \frac{{3025}}{3}\]Do k nguyên nên\[k = 0,1, \ldots ,1008\]

Vậy phương trình có 1009 nghiệm.

Đáp án cần chọn là: A

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Phương trình logarit và một số phương pháp giải !!

Số câu hỏi: 35

Copyright © 2021 HOCTAP247