Cho a,b,c là các số thực dương khác 1 thỏa mãn

Câu hỏi :

Cho a,b,c là các số thực dương khác 1 thỏa mãn \[\log _a^2b + \log _b^2c = {\log _a}\frac{c}{b} - 2{\log _b}\frac{c}{b} - 3\]. Gọi \[M,m\;\] lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của \[P = lo{g_a}b - lo{g_b}c\]. Giá trị của biểu thức \[S = m - 3M\;\] bằng

A.S=−16.

B.S=4.

C.S=−6.

D.S=6.

* Đáp án

* Hướng dẫn giải

Ta có:

\[\begin{array}{*{20}{l}}{\,\,\,\,\,\,\,\log _a^2b + \log _b^2c = {{\log }_a}\frac{c}{b} - 2{{\log }_b}\frac{c}{b} - 3}\\{ \Leftrightarrow \log _a^2b + \log _b^2c = {{\log }_a}c - {{\log }_a}b - 2{{\log }_b}c - 1}\\{ \Leftrightarrow \log _a^2b + \log _b^2c = {{\log }_b}c.{{\log }_a}b - {{\log }_a}b - 2{{\log }_b}c - 1\,\,\left( * \right)}\end{array}\]

Đặt\[{\log _a}b = x \Rightarrow {\log _b}c = x - P\]

Phương trình \[\left( * \right) \Leftrightarrow {x^2} + {\left( {x - P} \right)^2} = \left( {x - P} \right)x - x - 2\left( {x - P} \right) - 1\]

\[\begin{array}{*{20}{l}}{ \Leftrightarrow 2{x^2} - 2Px + {P^2} = {x^2} - Px - 3x + 2P - 1}\\{ \Leftrightarrow {x^2} - \left( {P - 3} \right)x + {P^2} - 2P + 1 = 0\,\,\,\left( { * * } \right)}\end{array}\]

Ta có:\[{\rm{\Delta }} = {\left( {P - 3} \right)^2} - 4\left( {{P^2} - 2P + 1} \right) = - 3{P^2} + 2P + 5\]

Phương trình (**) có nghiệm

\[ \Leftrightarrow \Delta \ge 0 \Leftrightarrow - 3{P^2} + 2P + 5 \ge 0 \Leftrightarrow - 1 \le P \le \frac{5}{3}\]

\( \Rightarrow \left\{ {\begin{array}{*{20}{c}}{m = - 1}\\{M = \frac{5}{3}}\end{array}} \right.\)

Vậy\[S = m - 3M = - 1 - 3.\frac{5}{3} = - 6\]

Đáp án cần chọn là: C

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Phương trình logarit và một số phương pháp giải !!

Số câu hỏi: 35

Copyright © 2021 HOCTAP247