Tìm tập nghiệm của bất phương trình

Câu hỏi :

Tìm tập nghiệm của bất phương trình \[{5^x} < 7 - 2x\]

A.R

B.\[\left( { - \infty ;1} \right)\]

c. \[\left( {1; + \infty } \right)\]

D. \[\emptyset \]

* Đáp án

* Hướng dẫn giải

Ta có \[{5^x} < 7 - 2x \Leftrightarrow {5^x} + 2x - 7 < 0\]

Ta có\[{5^x} > 0\]với\[\forall x\]nên \[\left( {7 - 2x} \right) > 0 \Leftrightarrow x < \frac{7}{2}\]

Xét hàm\[f\left( x \right) = {5^x} + 2x - 7\]trên\[\left( { - \infty ;\frac{7}{2}} \right)\]

Có\[f'\left( x \right) = {5^x}\ln 5 + 2 > 0,\forall x \in \left( { - \infty ;\frac{7}{2}} \right)\]

Do đó hàm số đồng biến trên\[\left( { - \infty ;\frac{7}{2}} \right)\]hay\[f\left( x \right) < f\left( 1 \right) = 0,\forall x < 1\]

Vậy tập nghiệm của bất phương trình là\[\left( { - \infty ;1} \right)\]

Đáp án cần chọn là: B

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bất phương trình mũ !!

Số câu hỏi: 21

Copyright © 2021 HOCTAP247