A.R
B.\[\left( { - \infty ;1} \right)\]
c. \[\left( {1; + \infty } \right)\]
D. \[\emptyset \]
Ta có \[{5^x} < 7 - 2x \Leftrightarrow {5^x} + 2x - 7 < 0\]
Ta có\[{5^x} > 0\]với\[\forall x\]nên \[\left( {7 - 2x} \right) > 0 \Leftrightarrow x < \frac{7}{2}\]
Xét hàm\[f\left( x \right) = {5^x} + 2x - 7\]trên\[\left( { - \infty ;\frac{7}{2}} \right)\]
Có\[f'\left( x \right) = {5^x}\ln 5 + 2 > 0,\forall x \in \left( { - \infty ;\frac{7}{2}} \right)\]
Do đó hàm số đồng biến trên\[\left( { - \infty ;\frac{7}{2}} \right)\]hay\[f\left( x \right) < f\left( 1 \right) = 0,\forall x < 1\]
Vậy tập nghiệm của bất phương trình là\[\left( { - \infty ;1} \right)\]
Đáp án cần chọn là: B
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247