A.\[(0, + \infty )\]
B. \[( - \infty , + \infty )\]
C. \[(2, + \infty )\]
D. \[( - \infty ,0)\]
Ta có
\[\begin{array}{l}{2^{x - 1}} > {\left( {\frac{1}{{16}}} \right)^{\frac{1}{x}}} \Leftrightarrow {2^{x - 1}} > {\left( {{2^{ - 4}}} \right)^{\frac{1}{x}}} \Leftrightarrow {2^{x - 1}} > {2^{ - \frac{4}{x}}}\\ \Leftrightarrow x - 1 > - \frac{4}{x} \Leftrightarrow x + \frac{4}{x} - 1 > 0 \Leftrightarrow \frac{{{x^2} - x + 4}}{x} > 0\end{array}\]
Vì \[{x^2} - x + 4 > 0\]nên suy ra x>0
Đáp án cần chọn là: A
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247