Tập nghiệm của bất phương trình

Câu hỏi :

Tập nghiệm của bất phương trình \[{3^{\sqrt {2x} + 1}} - {3^{x + 1}} \le {x^2} - 2x\] là:

A.\[\left( {0; + \infty } \right)\]

B. \[\left[ {0;2} \right]\]

C. \[\left[ {2; + \infty } \right)\]

D. \[\left[ {2; + \infty } \right) \cup \left\{ 0 \right\}\]

* Đáp án

* Hướng dẫn giải

ĐK:\[x \ge 0\]

\[{3^{\sqrt {2x} + 1}} - {3^{x + 1}} \le {x^2} - 2x \Leftrightarrow {3^{\sqrt {2x} + 1}} + 2x \le {3^{x + 1}} + {x^2} \Leftrightarrow {3^{\sqrt {2x} + 1}} + {\left( {\sqrt {2x} } \right)^2} \le {3^{x + 1}} + {x^2}\]

Xét hàm số \[f\left( t \right) = {3^{t + 1}} + {t^2}\]có\[f'\left( t \right) = {3^{t + 1}}.\ln 3 + 2t > 0\,\,\forall t \ge 0 \Rightarrow \] Hàm số đồng biến trên \[\left[ {0; + \infty } \right)\]

Mà\[f\left( {\sqrt {2x} } \right) \le f\left( x \right) \Leftrightarrow \sqrt {2x} \le x \Leftrightarrow 2x \le {x^2} \Leftrightarrow {x^2} - 2x \ge 0 \Leftrightarrow x \in \left( { - \infty ;0} \right] \cup \left[ {2; + \infty } \right)\]

Mà\[x \ge 0 \Rightarrow x \in \left[ {2; + \infty } \right) \cup \left\{ 0 \right\}\]

Đáp án cần chọn là: D

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bất phương trình mũ !!

Số câu hỏi: 21

Copyright © 2021 HOCTAP247