Tập nghiệm của bất phương trình

Câu hỏi :

Tập nghiệm của bất phương trình \[{\left( {{x^2} + x + 1} \right)^x} < 1\] là:

A.\[\left( {0; + \infty } \right)\]

B. \[\left( { - \infty ;0} \right)\]

C. \[\left( { - \infty ; - 1} \right)\]

D. \[\left( {0;1} \right)\]

* Đáp án

* Hướng dẫn giải

\[{\left( {{x^2} + x + 1} \right)^x} < 1\]

Lấy loganepe hai vế ta có\[\ln {\left( {{x^2} + x + 1} \right)^x} < \ln 1\,\,\left( * \right)\]

\[{x^2} + x + 1 = {(x + \frac{1}{2})^2} + 34 > 0 \Rightarrow ( * ) \Leftrightarrow xln\]

\[({x^2} + x + 1) < 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\left\{ {\begin{array}{*{20}{c}}{x < 0}\\{ln({x^2} + x + 1) > 0}\end{array}} \right.}\\{\left\{ {\begin{array}{*{20}{c}}{x > 0}\\{ln({x^2} + x + 1) < 0}\end{array}} \right.}\end{array}} \right.\]

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\left\{ {\begin{array}{*{20}{c}}{x < 0}\\{{x^2} + x + 1 > 1}\end{array}} \right.}\\{\left\{ {\begin{array}{*{20}{c}}{x > 0}\\{{x^2} + x + 1 < 1}\end{array}} \right.}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\left\{ {\begin{array}{*{20}{c}}{x < 0}\\{{x^2} + x > 0}\end{array}} \right.}\\{\left\{ {\begin{array}{*{20}{c}}{x > 0}\\{{x^2} + x < 0}\end{array}} \right.}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\left\{ {\begin{array}{*{20}{c}}{x < 0}\\{\left[ {\begin{array}{*{20}{c}}{x > 0}\\{x < - 1}\end{array}} \right.}\end{array}} \right.}\\{\left\{ {\begin{array}{*{20}{c}}{x > 0}\\{ - 1 < x < 0}\end{array}} \right.}\end{array}} \right. \Leftrightarrow x < - 1\)

Vậy tập nghiệm của bất phương trình là\[\left( { - \infty ; - 1} \right)\]

Đáp án cần chọn là: C

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bất phương trình mũ !!

Số câu hỏi: 21

Copyright © 2021 HOCTAP247