A.\[\left( {0; + \infty } \right)\]
B. \[\left( { - \infty ;0} \right)\]
C. \[\left( { - \infty ; - 1} \right)\]
D. \[\left( {0;1} \right)\]
\[{\left( {{x^2} + x + 1} \right)^x} < 1\]
Lấy loganepe hai vế ta có\[\ln {\left( {{x^2} + x + 1} \right)^x} < \ln 1\,\,\left( * \right)\]
Vì
\[{x^2} + x + 1 = {(x + \frac{1}{2})^2} + 34 > 0 \Rightarrow ( * ) \Leftrightarrow xln\]
\[({x^2} + x + 1) < 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\left\{ {\begin{array}{*{20}{c}}{x < 0}\\{ln({x^2} + x + 1) > 0}\end{array}} \right.}\\{\left\{ {\begin{array}{*{20}{c}}{x > 0}\\{ln({x^2} + x + 1) < 0}\end{array}} \right.}\end{array}} \right.\]
\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\left\{ {\begin{array}{*{20}{c}}{x < 0}\\{{x^2} + x + 1 > 1}\end{array}} \right.}\\{\left\{ {\begin{array}{*{20}{c}}{x > 0}\\{{x^2} + x + 1 < 1}\end{array}} \right.}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\left\{ {\begin{array}{*{20}{c}}{x < 0}\\{{x^2} + x > 0}\end{array}} \right.}\\{\left\{ {\begin{array}{*{20}{c}}{x > 0}\\{{x^2} + x < 0}\end{array}} \right.}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\left\{ {\begin{array}{*{20}{c}}{x < 0}\\{\left[ {\begin{array}{*{20}{c}}{x > 0}\\{x < - 1}\end{array}} \right.}\end{array}} \right.}\\{\left\{ {\begin{array}{*{20}{c}}{x > 0}\\{ - 1 < x < 0}\end{array}} \right.}\end{array}} \right. \Leftrightarrow x < - 1\)
Vậy tập nghiệm của bất phương trình là\[\left( { - \infty ; - 1} \right)\]
Đáp án cần chọn là: C
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247