Gọi S là tập hợp các số tự nhiên n có 4 chữ số thỏa mãn

Câu hỏi :

Gọi S là tập hợp các số tự nhiên n có 4 chữ số thỏa mãn \[{\left( {{2^n} + {3^n}} \right)^{2020}} < {\left( {{2^{2020}} + {3^{2020}}} \right)^n}\]. Số phần tử của S là:

A.8999

B.2019       

C.1010       

D.7979

* Đáp án

* Hướng dẫn giải

\[\begin{array}{l}\,\,\,\,{\left( {{2^n} + {3^n}} \right)^{2020}} < {\left( {{2^{2020}} + {3^{2020}}} \right)^n}\\ \Leftrightarrow \ln {\left( {{2^n} + {3^n}} \right)^{2020}} < \ln {\left( {{2^{2020}} + {3^{2020}}} \right)^n}\\ \Leftrightarrow 2020\ln \left( {{2^n} + {3^n}} \right) < n\ln \left( {{2^{2020}} + {3^{2020}}} \right)\\ \Leftrightarrow \frac{{\ln \left( {{2^n} + {3^n}} \right)}}{n} < \frac{{\ln \left( {{2^{2020}} + {3^{2020}}} \right)}}{{2020}}\end{array}\]

Xét hàm đặc trưng\[f\left( x \right) = \frac{{\ln \left( {{2^x} + {3^x}} \right)}}{x}\,\,\left( {x \in {\mathbb{N}^ * }} \right)\]ta có:

\[\begin{array}{l}f\prime (x) = \frac{{\frac{{({2^x} + {3^x})\prime }}{{{2^x} + {3^x}}}.x - ln({2^x} + {3^x})}}{{{x^2}}}\forall x \in {\mathbb{N}^ * }\\f\prime (x) = \frac{{({2^x}ln2 + {3^x}ln3)x - ({2^x} + {3^x}).ln({2^x} + {3^x})}}{{{x^2}({2^x} + {3^x})}}\forall x \in {\mathbb{N}^ * }\\ = \frac{{{2^x}ln2.x - {2^x}ln({2^x} + {3^x}) + {3^x}ln3.x - {3^x}ln({2^x} + {3^x})}}{{{x^2}({2^x} + {3^x})}}\forall x \in {\mathbb{N}^ * }\\f\prime (x) = \frac{{{2^x}(xln2 - ln({2^x} + {3^x})) + {3^x}(xln3 - ln({2^x} + {3^x}))}}{{{x^2}({2^x} + {3^x})}}\forall x \in {\mathbb{N}^ * }\\f\prime (x) = \frac{{{2^x}[ln{2^x} - ln({2^x} + {3^x})] + {3^x}[ln{3^x} - ln({2^x} + {3^x})]}}{{{x^2}({2^x} + {3^x})}}\forall x \in {\mathbb{N}^ * }\end{array}\]

Vì \(\left\{ {\begin{array}{*{20}{c}}{{2^x} < {2^x} + {3^x} \Rightarrow ln{2^x} < ln({2^x} + {3^x})}\\{{3^x} < {2^x} + {3^x} \Rightarrow ln{3^x} < ln({2^x} + {3^x})}\end{array}} \right. \Rightarrow f\prime (x) < 0\forall x \in \mathbb{N} * \)

⇒ Hàm số\[y = f\left( x \right)\]nghịch biến trên\[{\mathbb{N}^ * }\]

Lại có: \[f\left( n \right) < f\left( {2020} \right) \Leftrightarrow n > 2020\]</>

Kết hợp điều kiện đề bài ta có\[2020 < n \le 9999,\,\,n \in {\mathbb{N}^ * }\]

Vậy có\[\frac{{9999 - 2021}}{1} + 1 = 7979\]giá trị của n thỏa mãn yêu cầu bài toán.

Đáp án cần chọn là: D

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bất phương trình mũ !!

Số câu hỏi: 21

Copyright © 2021 HOCTAP247