Trang chủ Đề thi & kiểm tra Khác Bất phương trình logarit !! Tìm tất cả các giá trị thực của tham số...

Tìm tất cả các giá trị thực của tham số m để bất phương trình

Câu hỏi :

Tìm tất cả các giá trị thực của tham số m để bất phương trình \[4.{\left( {{{\log }_2}\sqrt x } \right)^2} + {\log _2}x + m \ge 0\]nghiệm đúng với mọi giá trị \[x \in \left[ {1;64} \right]\]

A.m<0.        

B.\[m \le 0\;\]

C.\[m \ge 0\]

D.m>0.

* Đáp án

* Hướng dẫn giải

Điều kiện : \[x > 0\]\[4.{\left( {{{\log }_2}\sqrt x } \right)^2} + {\log _2}x + m \ge 0 \Leftrightarrow 4.{\left( {{{\log }_2}\sqrt x } \right)^2} + 2.{\log _2}\sqrt x \ge - m\](1)

Đặt\[t = {\log _2}\sqrt x \] Khi\[x \in \left[ {1;64} \right] \Rightarrow t \in \left[ {0;3} \right]\]

Ta có bất phương trình\[4{t^2} + 2t \ge - m\]

Xét\[f(t) = 4{t^2} + 2t;f'(t) = 8t + 2 > 0,\forall t \in \left[ {0;3} \right]\]

Để (1) nghiệm đúng với\[\forall t \in \left[ {0;3} \right]\] thì\[\mathop {\min }\limits_{\left[ {0;3} \right]} f\left( t \right) \ge - m\]

\[ \Leftrightarrow f(0) \ge - m \Leftrightarrow 0 \ge - m \Leftrightarrow m \ge 0\]

Đáp án cần chọn là: C

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bất phương trình logarit !!

Số câu hỏi: 35

Copyright © 2021 HOCTAP247